If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2=4x
We move all terms to the left:
40x^2-(4x)=0
a = 40; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·40·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*40}=\frac{0}{80} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*40}=\frac{8}{80} =1/10 $
| -5(3x+2)=-11x-14 | | 0.5(x+6)=1+0.25(x-4) | | -2(x+7)-4(5-x)=10 | | 12x-6=-6+12x | | 2x^-8x=-15 | | -3(x-1)+7=31 | | 6.9g+4=4.9+8 | | 6-x/7=9 | | 7(v+10)=5-(-7v-65) | | 8h-10=3h-15 | | 9/(k+3)=3/5 | | 6x+8=2(3x+2) | | 1/10=1/10p+20/10 | | 141=16x-3 | | 4x-13=7x-5 | | 180=x+13+2x+7+5x | | 3p^2+3p-18=0 | | 7x+17x-12+7x=7+(5x-3) | | 20=2(l+40) | | X-8=37-(x+9) | | 4x-2x+10=-4+5x+2 | | -3(x+-1)+7x=31 | | 3x+8-x=5×-4 | | 5x-(x-2)-5(1+x)=3 | | r(r+4)=45 | | -4b+13=6×-7 | | 2a-10=34 | | 2(5x-1)=10x+5 | | .08=1-x | | Y+10=3(y-6) | | 7(x+3)-6=2x+5(2+x) | | 4x-5+2x=17 |